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SUMMARY

We recently proposed an improved (9,5) higher order compact (HOC) scheme for the unsteady two-
dimensional (2-D) convection–diffusion equations. Because of using only five points at the current time
level in the discretization procedure, the scheme was seen to be computationally more efficient than its
predecessors. It was also seen to capture very accurately the solution of the unsteady 2-D Navier–Stokes
(N–S) equations for incompressible viscous flows in the stream function–vorticity (� − �) formulation.

In this paper, we extend the scope of the scheme for solving the unsteady incompressible N–S equations
based on primitive variable formulation on a collocated grid. The parabolic momentum equations are solved
for the velocity field by a time-marching strategy and the pressure is obtained by discretizing the elliptic
pressure Poisson equation by the steady-state form of the (9,5) scheme with the Neumann boundary
conditions. In particular, for pressure, we adopt a strategy on the collocated grid in conjunction with
ideas borrowed from the staggered grid approach in finite volume. We first apply this extension to a
problem having analytical solution and then to the famous lid-driven square cavity problem. We also
apply our formulation to the backward-facing step problem to see how the method performs for external
flow problems. The results are presented and are compared with established numerical results. This new
approach is seen to produce excellent comparison in all the cases. Copyright q 2007 John Wiley & Sons,
Ltd.
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388 J. C. KALITA AND S. SEN

1. INTRODUCTION

The transient two-dimensional (2-D) incompressible Navier–Stokes (N–S) equations in the tradi-
tional primitive variable (velocity–pressure) formulation is
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= 0 (1)
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+ v
�u
�y

− 1

Re
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− 1

Re
∇2v = − �p

�y
(3)

where u, v are velocities along x-, y-directions respectively, p is the pressure, t is the time
and Re is the Reynolds number given by Re= Lu0/�, where L is some characteristic length, u0
some characteristic velocity and � is the kinematic viscosity. Though this formulation accurately
represents the fluid flow phenomenon, its direct solution traditionally has been difficult to obtain
due to the pressure term in Equations (2) and (3). Partly in order to avoid handling the pressure
variable, an alternative formulation using stream function and vorticity has been used for several
decades. The alternative formulation introduces the stream function � and vorticity � and is
written as

�xx + �yy = −�(x, y) (4)

�t + (u�x + v�y) = 1

Re
(�xx + �yy) (5)

The velocity components are defined as

u(x, y) =�y, v(x, y)= −�x (6)

The last several decades have seen several attempts on developing finite-difference schemes for the
transient N–S equations, both in the primitive variable as well as in �–� formulations. Amongst
them higher order compact (HOC) finite-difference schemes have become quite popular as against
the other lower order accurate schemes which require high mesh refinements and hence are
computationally inefficient. On the other hand, the higher order accuracy of the HOC methods
combined with the compactness of the difference stencil yields highly accurate numerical solutions
on relatively coarser grids with greater computational efficiency. Most of these HOC schemes were
developed for the 2-D convection–diffusion equations in steady state which were extended later
on to solve the steady-state N–S equations. Very few of them [1] were in the primitive variable
formulations. Recently, Kalita et al. developed a few classes of HOC [2, 3] schemes for the
2-D convection–diffusion equations which were seen to capture very accurately and efficiently
transient flows governed by the incompressible N–S equations. However like most of the other
HOC schemes, they utilized the �–� formulation only.

The present work is an attempt to solve the transient N–S equations in the primitive variable
formulations using the recently developed (9,5) scheme [3] on collocated grids. In the process we
also rope in a finite volume staggered grid approach on the collocated grid for the treatment of
the pressure variable. To the best of our knowledge, this is perhaps the only attempt to solve the
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(9,5) PRIMITIVE VARIABLE HOC SCHEME FOR TRANSIENT N–S EQUATIONS 389

N–S equations in the primitive variable form by a transient HOC scheme on a collocated grid.
We firstly apply the proposed procedure on a problem having analytical solution for which we
also carry out error analysis. Then we apply it to the famous lid-driven square cavity problem,
both the unsteady and time-marching steady-state case. Finally to test how the present method
performs for an external flow situation we apply it to the backward-facing step problem. Results
are compared with those obtained with other established schemes for both primitive variable and
�–� formulations. For the first problem, our numerical results are extremely close to the analytical
ones, whereas for the cavity and step problems, our solutions agree very well, both qualitatively
and quantitatively with already published results.

The paper has been arranged in four sections. Section 2 deals with discretization and issues
related to it, particularly the treatment of the pressure equation at the interior and at the boundary,
Section 3 with the numerical test cases and finally, Section 4 summarizes the whole work.

2. DISCRETIZATION AND NUMERICAL PROCEDURE

The transient 2-D convection–diffusion equation in the variable � in some convex domain �
(assumed rectangular here) with boundary �� may be written as

a
��

�t
− ∇2� + c(x, y, t)

��

�x
+ d(x, y, t)

��

�y
= g(x, y, t) (7)

where a is a constant, c and d are the convection coefficients and g is a forcing function. In
Reference [3], Kalita and Chhabra proposed an HOC scheme for Equation (7) at the (i, j)th point
(xi , y j ) which is given by

a
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where �x , �y are the uniform step lengths in the x- and y-directions, respectively, and �t is
the uniform time step. The details of the coefficients and finite difference operators appearing in
(8) can be found in [3]. The order of accuracy of this unconditionally stable implicit scheme is
O(�t2, �x4, �y4). As it utilizes nine points at the previous and five points at the current time
level, it was termed a (9, 5) scheme.

To solve the N–S equations, firstly we discretize the momentum equations (2) and (3) using
(8) with a =Re, c=Re u, d =Re v and g=Re �p/�x or Re �p/�y; for both the equations, we
use the Dirichlet conditions for u and v at the boundaries. It is to be noted that since analytical
expressions are not known for p, we must approximate the pressure gradients numerically. For
this, we may use central difference approximations at the interior and standard one sided first
order approximations at the boundaries. One can also use the strategy applied in Reference [4]
for the gradient source term in order to obtain a fourth order compact approximation. Once the
momentum equations (2)–(3) are solved, we proceed to find pressure p as follows:
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390 J. C. KALITA AND S. SEN

By differentiating Equation (2) with respect to x and (3) with respect to y, and adding, we get
the familiar pressure Poisson equation (PPE)

∇2 p= w (9)

where w =−(uux + vuy)x − (uvx + vvy)y − Dt + (Dxx + Dyy)/Re with D = ux + vy .
Although a staggered grid approach [5–7] is quite effective in handling the PPE, but it has an

inherent complexity related to book-keeping. On the other hand, collocated grid is much simpler
to use even when dealing with complex solution domains. Reasonably accurate solutions are
obtained from the PPE with the Neumann boundary conditions, but only when some compatibility
condition is satisfied. To discretize (9), we use the steady-state form of (7) in conjunction with
the approaches suggested in [8, 9] for the treatment of the source term w in (9) and the Neumann
boundary conditions. At the interior, the steady-state form of (8) yields[
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12
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]
pi, j =

[
1 + �x2

12
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where wi, j is obtained by following the approach shown in [8] and is expressed as
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Assuming constant velocities along the boundaries, Equations (2)–(3) reduce to
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The finite-difference approximations for the pressure Neumann boundary conditions (12)–(13) on
a grid of size m × n are as follows:

On the left boundary, ∀ 1� j � n:

p2, j − p1, j = −(u2, j + u1, j )(u2, j − u1, j )/2 − (v2, j+v1, j )(u2, j+1+u1, j+1 − u2, j−1 − u1, j−1)/8
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On the right boundary, ∀ 1� j � n:

pm−1, j − pm, j = (um−1, j + um, j )(um, j − um−1, j )/2
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On the bottom, ∀ 1� i �m:
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Finally at the top boundary, ∀ 1� i �m:
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[
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Note that, for the continuity equation (1) to be satisfied at the next time step, D(n+1)
i, j is set equal to

zero as in [8], but Di, j (≡ D(n)
i, j ) is retained at each time step to overcome non-linear instabilities.

But unlike [8, 9], we have retained the term (Dxx + Dyy)/Re on the RHS of (9) which along with
(12)–(13) yields the correct pressure field.
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After discretization, the momentum equations and the PPE finally reduce to the single matrix
forms

A1u(n+1) = f1(u(n), v(n), p(n)) (18)

A2v(n+1) = f2(u(n), v(n), p(n)) (19)

A3p(n+1) = f3(u(n+1), v(n+1),u(n), v(n)) (20)

where the coefficient matrices Ai (1� i � 3) are asymmetric sparse matrices. For a grid of size
m × n, Ai has a dimension mn, and u(n), u(n+1), v(n), v(n+1), p(n), p(n+1), fi (1� i � 3) are
mn-component vectors.

The next step now is to solve Equations (18)–(20) with iterative methods. As the coefficient
matrix A is not generally diagonally dominant, conventional iterative methods such as Gauss–
Seidel cannot be used. In order to solve these systems the biconjugate gradient stabilized method
(BiCGStab) [10–13] is used here without preconditioning.

To compute the time accurate or time-marching steady-state solutions of the N–S equations, we
employ an outer-inner iteration procedure. After some suitable initialization strategy, in a typical
outer temporal cycle, (18)–(20) are solved using BiCGStab. Once all the values of u, v and p are
computed at a particular time step, the temporal outer iteration is complete. The stopping criteria
for the inner iterations are different for different problems (see Sections 3.1, 3.2 and 3.3). All of
our computations were carried out on a Pentium 4-based PC with 512MB RAM using double
precision floating point arithmetic.

3. NUMERICAL EXAMPLES

In order to validate the proposed scheme and test its robustness, we apply it to three unsteady
2-D problems. These are: (i) the flow decayed by viscosity; (ii) the flow in the lid-driven square
cavity; and (iii) the backward-facing step problem. As the first problem has analytical solutions,
we use exact initial data whereas for the other two problems, zero initial data were used in all the
computations, unless otherwise specified.

3.1. Problem 1: flow decayed by viscosity

We consider the flow decayed by viscosity problem [2, 14–17] governed by the 2-D N–S equations
(1)–(3) in the square 0� x, y � 	, which has analytical solutions given by

u(x, y, t) =− cos x sin y e−2t/Re, v(x, y, t) = sin x cos y e−2t/Re (21)

and

p(x, y, t) =− 1
4 (cos 2x + cos 2y)e−4t/Re (22)

The initial and boundary conditions for u, v and p can be found from (21) and (22).
We present our results computed on grid sizes ranging from 21× 21 to 101× 101 for different

Reynolds numbers in Table I and Figures 1–3. That the flow decays with viscosity is obvious from
Figure 1 where the exact and numerical surface and contour plots of the horizontal velocity u
are shown for Re= 100 at two different times t = 2.0 and 20.0. Figure 2 displays similar contour
plots for vertical velocity v. One can hardly distinguish the numerical solutions from the analytical
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Table I. Convergence rate of the (9,5) HOC scheme.

Maximum|error| Maximum|error| Maximum|error|
Grid (at t = 2.0) Rate (at t = 4.0) Rate (at t = 20.0) Rate

Re= 50

For u

21× 21 0.00273188 0.00231621 0.00062696
3.280 3.216 2.868

41× 41 0.00028127 0.00024928 0.00008586
2.591 2.634 2.869

81× 81 0.00004669 0.00004016 0.00001175

For v
21× 21 0.00430123 0.00376310 0.00124538

2.975 3.011 3.326
41× 41 0.00054709 0.00046684 0.00012422

3.316 3.341 3.344
81× 81 0.00005495 0.00004606 0.00001223

For p
21× 21 0.01344523 0.01112516 0.00253587

2.226 2.164 1.742
41× 41 0.00287319 0.00248328 0.00075799

1.670 1.681 1.767
81× 81 0.00090305 0.00077430 0.00022264

Re= 100

For u

61× 61 0.00016589 0.00015502 0.00008922
2.601 2.479 2.584

81× 81 0.00007849 0.00007598 0.00004242
2.359 2.539 2.592

101× 101 0.00004636 0.00004312 0.00002390

For v
61× 61 0.00026516 0.00024557 0.00013109

3.192 2.978 3.112
81× 81 0.00010584 0.00010424 0.00005356

2.535 2.845 2.952
101× 101 0.00006011 0.00005525 0.00002772

For p
61× 61 0.00163631 0.00151879 0.00082403

1.712 1.817 1.815
81× 81 0.00099980 0.00090062 0.00048890

2.086 1.952 1.953
101× 101 0.00062765 0.00058260 0.00031618
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Figure 1. Surface and contour plots horizontal velocity for problem 1 (Re= 100, 61× 61 grid):
(a) numerical at t = 2.0; (b) exact at t = 2.0; (c) numerical at t = 20.0; and (d) exact at t = 20.0.
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Figure 2. Surface and contour plots vertical velocity for problem 1 (Re= 100, 61× 61 grid): (a) numerical
at t = 2.0; (b) exact at t = 2.0; (c) numerical at t = 20.0; and (d) exact at t = 20.0.
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Figure 3. Surface and contour plots pressure for problem 1 (Re= 100, 61× 61 grid): (a) numerical at
t = 2.0; (b) exact at t = 2.0; (c) numerical at t = 20.0; and (d) exact at t = 20.0.

ones. This is also obvious from Figure 3 where the numerical and exact contour plots for p, at
times t = 2.0 and 20.0 for Re= 100, obtained with a time step �t = 0.00025 and space lengths
�x =�y = 	/60 are almost identical. Table I summarizes the maximum absolute errors for the
velocities and the pressure on three grid sizes. Although the rate is on the expected line for the
velocities, a lower rate of convergence can be seen for p. The lower convergence rate for p may
be attributed to the fact that we are approximating pressure gradients by a second order central
difference scheme at the interior points. In all the computations, the stopping criterion for the
BiCGStab inner iterations was set at 0.5× 10−6.

3.2. Test problem 2: the lid-driven square cavity problem

Next we consider the 2-D lid-driven square cavity problem. This problem, over the years, has
become the most frequently used benchmark problem for the assessment of numerical methods
[2, 4, 17–20], particularly the steady-state solution of the incompressible fluid flows governed by
the N–S equations (1)–(3). This problem is of great scientific interest because it displays almost
all fluid mechanical phenomena for incompressible viscous flows in the simplest of geometric
settings. The cavity is defined as the square 0� x, y � 1. The fluid motion is generated by the
sliding motion of the top wall of the cavity (y = 1) in its own plane from left to right. Boundary
conditions on the top wall are given as u = 1, v = 0. On all other walls of the cavity the velocities
are zero (u = v = 0). The moving wall generates vorticity which diffuses inside the cavity and this
diffusion is the driving mechanism of the flow. At high Re, several secondary and tertiary vortices
begin to appear, whose characteristics depend on Re.

We obtain the steady-state solutions using a time-marching strategy. The steady state is assumed
to reach when the maximum �-error (� being either u or v) between two successive outer temporal
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(a) (b)

(c) (d)

(e) (f)

Figure 4. The steady-state streamlines for the lid-driven cavity flow for: (a) Re= 100; (b) Re= 400;
(c) Re= 1000; (d) Re= 2000; (e) Re= 3200; and (f) Re= 4000.

iteration steps is smaller than 1.0× 10−7; the same tolerance limit was set for the inner BiCGStab
iterations as well. Once the steady state is reached stream function values are post-processed using
(4) with discretization similar to (10).

In Figure 4, we present the well-known stream function contours for 100�Re� 4000. All these
graphs exhibit the typical separations and secondary vortices at the bottom corners of the cavity as
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(a) (b)

(c) (d)

(e) (f)

Figure 5. The steady-state pressure contours for the lid-driven cavity flow for: (a) Re= 100; (b) Re= 400;
(c) Re= 1000; (d) Re= 2000; (e) Re= 3200; and (f) Re= 4000.

well as at the top left (which is visible here for Re= 2000 onwards). We can also see evolution of
tertiary vortices for Reynolds number as low as Re= 100 which concurs with the comments made
in Reference [21]. These stream function profiles match with the benchmark results of Ghia et al.
[18] and other established results [19, 20, 22, 23] thereby confirming that our formulation yields
quantitatively accurate solutions.
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Figure 6. Comparisons of steady state for the lid-driven square cavity flow: (a) vertical velocity along the
horizontal centreline; (b) horizontal velocity along the vertical centreline; (c) pressure along the horizontal

centreline; and (d) pressure along the vertical centreline.

Figure 5 exhibits pressure contours for 100�Re� 4000. The contours when compared with
established results [8, 20, 23] give excellent comparison. Figures 6(a) and (b) exhibit comparisons
of the vertical velocities on the horizontal centreline and the horizontal velocities on the vertical
centreline of the square cavity for 100�Re� 3200 with those of Ghia et al. [18]. In each case, our
velocity profiles match very well with [18]. Figures 6(c) and (d) exhibit pressure on the horizontal
centreline and the vertical centreline, respectively, of the square cavity. For Re= 1000 we compare
our results with those obtained by Bruneau and Saad [20] on a 1024× 1024 grid. Again we obtain
a pretty consistent comparison. In Figure 7, we show the surface plot of the divergence of velocity
for Re= 1000. As can be seen from the plot the divergence vanishes everywhere except at the top
two corners of the cavity which is due to the discontinuities of the horizontal velocities at those
points.

In Table II, we provide quantitative data comparison of our solutions. Here we present our fine
grid steady-state data for the primary, secondary and tertiary vortex centres and compare them with
the well established work of Ghia et al. [18]. Our results again prove to be an excellent match.
In Table III, global quantities such as the total kinetic energy E and the enstrophy Z are being
provided. Also as an addition, we provide the drag coefficient Cd on the top. These quantities are
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Figure 7. Surface plot of the divergence of velocity for Re= 1000 on a 161× 161 grid.

defined as

E = 1

2

∫
�

|q|2 dx, Z = 1

2

∫
�

‖�‖2 dx, Cd = 1

Re

∫ 1

0

�u
�y

dx

where q= (u, v) and �= �v/�x − �u/�y is the vorticity. It may be mentioned that in perhaps
the only previous example where an HOC method was used to solve this problem using the
primitive variable formulation of the N–S equations [1], attempts to compute results for higher
Reynolds numbers resulted in oscillations and results were provided only for Re= 400. For the
cases presented here, no oscillations were seen and as such no under-relaxation was used. However,
once Re was increased beyond 4000, oscillations in the pressure values began to appear which,
however, can be controlled by using under-relaxation at the boundaries. Also, as expected, the
CPU time taken by the primitive variable formulation is much more than what it used to be for
the �–� [3] formulation. For example, the CPU time taken for Re= 1000 to reach steady state on
an 81× 81 grid was nearly 1.5 h.

3.3. Test problem 3: the backward-facing step problem

Next we consider the flow over the backward-facing step in a channel which also provides an
excellent test case for the accuracy of numerical methods because of the reattachment length being
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Table III. Values of global quantities of energy, enstrophy and drag coefficient at the top for the
lid-driven square cavity from Re= 100 to 4000 using (9,5) HOC scheme in primitive variable

formulation (results from [20] are given in the parentheses).

Re

Property 100 400 1000 2000 3200 4000

Kinetic energy 0.037463 0.042095 0.044498 0.044631 0.045644 0.045993
(0.044503)

Enstrophy 11.443 15.917 21.743 28.998 31.676 34.669
(22.424)

Drag coefficient 0.165021 0.058187 0.031915 0.021910 0.016323 0.014255
Grid size 81× 81 121× 121 161× 161 257× 257 257× 257 257× 257

(1024× 1024)

L
2

L
2

y

x

xr

x3x2

u
x

Dividing
Streamline

u=v=0

v=0

30L

u=v=0 Reattachment
point

u=v=0

(lower wall eddy)

Separation
pointpoint

(upper wall eddy)

v=0
u=24y(0.5–y) =0

Reattachment

Figure 8. The backward-facing step flow configuration with boundary conditions.

a function of the Reynolds number. Numerical simulations are carried out for Reynolds numbers
100–500 on grid sizes ranging from 1201× 41 to 2401× 81. The problem configuration is shown
in Figure 8. At the inlet, a parabolic velocity profile is usually prescribed [24–29] and the one used
here is given by Gartling [28] as u = 24y(0.5 − y), v = 0. The downstream boundary conditions
are prescribed at a distance of 30 step heights so as to allow the flow to be fully developed.
Thus, at the outlet �u/�x = 0 and v = 0. At the stationary walls u = v = 0. The stream function
� is post-processed from the values of u and v as in the cavity problem; likewise the numerical
criterion for reaching steady state was the same as that of the cavity problem. At the outlet (denoted
by the index b), we approximate the values of u arising out of the Neumann boundary condition
by the fifth order backward difference formula (see [6])

ub, j = 1

25

[
48ub−1, j − 36ub−2, j + 16ub−3, j − 3ub−4, j − 12h

(
�u
�x

)
b, j

]
+ O(h5)
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Figure 9. The backward-facing step flow: steady-state streamlines for: (a) Re= 200;
(b) Re= 400; and (c) Re= 500.
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Figure 10. The backward-facing step flow: steady-state pressure contours for:
(a) Re= 200; (b) Re= 400; and (c) Re= 500.

Figure 9 shows the steady-state streamline patterns for 200�Re� 500. One can see a steady
increase in the reattachment length with the increase in Re. The formation of a secondary vortex at
the upper wall can be seen for Re= 500 which was also reported by Sohn [27]. Figure 10 shows
the steady-state pressure contours for the same range of Reynolds numbers. As expected, except
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Figure 11. The backward-facing step flow: steady-state relative velocity vector plots for: (a) Re= 200;
(b) Re= 400; and (c) Re= 500.

Table IV. Properties of wall eddy for the backward-facing step problem from Re= 200 to 500.

Wall Re 200 400 500

Lower Eddy centre (x, y) 0.999, −0.200 1.800, −0.200 2.199, −0.200
(0.938, −0.188) [24] (1.705, −0.188) [24] (2.079, −0.1874) [24]

�value −0.0330 −0.03412 −0.03463
(−0.03276) [24] (−0.03364) [24] (−0.03373) [24]

Recirculation 2.606 4.295 4.927
length (2.633) [24] (4.239) [24] (4.853) [24]

(4.32) [29]
Upper Eddy centre (x, y) — — 5.400, 0.413

(5.438, 0.406) [24]
�value — — 0.5005

(0.5005) [24]
Separation — — 4.255
point x2 (4.309) [24]

Reattachment — — 6.358
point x3 (6.555) [24]

in the recirculation zone(s), pressure keeps steadily falling in the downstream direction. Figure 11
exhibit the steady-state relative velocity vector plot. The velocity vector plots give a clear picture
of the recirculation zones and the velocity profiles at different streamwise locations, indicating the
development of a parabolic profile towards the exit. In these figures, the spacing in the y-direction
has been magnified four times for a better resolution. In Table IV, we present the lower and upper
wall eddy data and compare them with established results [24, 29], which again are very close.
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Figure 12. The reattachment length as a function of Reynolds number.

In Figure 12, the reattachment length as a function of Reynolds number is shown against the
experimental and computational results of Armaly et al. [25] and the numerical results of Kim
and Moin [26]. As they give no tabular results, the graphical results were optically scanned to
produce the cited quantities. Our results are in excellent agreement with the experimental results
of Armaly et al. [25] for 100�Re� 500.

4. CONCLUSION

In this paper, we extend a recently developed (9,5) HOC scheme for transient convection–diffusion
to the primitive variable formulations of the N–S equations. This is perhaps the only attempt to
solve the N–S equations in the primitive variable form by a transient HOC scheme on a collocated
grid. We apply this new approach to the problem of flow decayed by viscosity which has analytical
solutions and to compute the time-marching steady-state solution of the famous lid-driven square
cavity problem as well as that of the backward-facing step problem. In the first problem, the
Dirichlet boundary conditions are used and for the other two, we use the Neumann boundary
conditions for pressure. Employing suitable strategies to approximate both types of boundary
conditions in conjunction with the (9,5) scheme is seen to produce highly accurate results in all the
cases. It is easy to implement and the use of BiCGStab algorithm for solving the algebraic systems
arising at every time level makes the implicit procedure computationally efficient even in capturing
transient solutions as can be seen from our results in the first problem. As this approach computes
unsteady 2-D incompressible viscous flows governed by the N–S equations in the primitive variable
formulation, it has the potential to be extended to three dimensions on which we are working at
present.
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